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a b s t r a c t 

Lower-density Electroencephalography (EEG) recordings (from 1 to approximately 32 electrodes) are widely-used 

in research and clinical practice and enable scalable brain function measurement across a variety of settings and 

populations. Though a number of automated pipelines have recently been proposed to standardize and optimize 

EEG pre-processing for high-density systems with state-of-the-art methods, few solutions have emerged that are 

compatible with lower-density systems. However, lower-density data often include long recording times and/or 

large sample sizes that would benefit from similar standardization and automation with contemporary methods. 

To address this need, we propose the HAPPE In Low Electrode Electroencephalography (HAPPILEE) pipeline 

as a standardized, automated pipeline optimized for EEG recordings with lower density channel layouts of any 

size. HAPPILEE processes task-free (e.g., resting-state) and task-related EEG (including event-related potential 

data by interfacing with the HAPPE + ER pipeline), from raw files through a series of processing steps including 

filtering, line noise reduction, bad channel detection, artifact correction from continuous data, segmentation, 

and bad segment rejection that have all been optimized for lower density data. HAPPILEE also includes post- 

processing reports of data and pipeline quality metrics to facilitate the evaluation and reporting of data quality and 

processing-related changes to the data in a standardized manner. Here the HAPPILEE steps and their optimization 

with both recorded and simulated EEG data are described. HAPPILEE’s performance is then compared relative to 

other artifact correction and rejection strategies. The HAPPILEE pipeline is freely available as part of HAPPE 2.0 

software under the terms of the GNU General Public License at: https://github.com/PINE-Lab/HAPPE. 
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. Introduction 

Electroencephalography (EEG) recordings are a useful and nonin-

asive tool for interrogating human brain function across the lifespan.

dvancements in neuroimaging technology and computer science have

llowed for rich data collection in laboratories through the use of high-

ensity channel layouts, but it is not always feasible or optimal to rely

n these dense layouts. Low-density channel layouts (fewer than ap-

roximately 32 channels) continue to be heavily used, particularly with

linical populations, both in clinical research ( Brito et al., 2019 , 2016 ;

u et al., 2018 ; Pellinen et al., 2020 ; van den Munckhof et al., 2018 )

nd diagnostic testing ( Aeby et al., 2021 ; Cassani et al., 2017 ; Paul et al.,

019 ; Tiwari et al., 2017 ), as well as in low-resource areas ( Kariuki et al.,

016 ; Siddiqi et al., 2015 ; Sokolov et al., 2020 ; Williams et al., 2019 ).

 low-density EEG approach also provides the flexibility for researchers

o travel to participants for testing in natural contexts (e.g. school-based

r home-based studies, Troller-Renfree et al., 2021 ) or in the event that

articipants cannot come to the lab. Low-density EEG will also be in-
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trumental in future research, given the current momentum towards

arge-scale neuroscience studies that achieve community implementa-

ion and the focus on precision medicine through brain-based biomark-

rs (e.g., potential EEG-based screening for Autism Spectrum Disorder at

ell-child doctor’s visits), where high-density recordings may be neither

ractical nor necessary. Indeed, a number of wearable, ultra-low-cost,

ow-density EEG hardware solutions are emerging in industry to facil-

tate such measurement. A key impediment to the use of low-density

EG in these contexts is the fact that the raw EEG signal is contaminated

y both environmental and physiological artifacts. Up to this point, re-

earcher selection of uncontaminated EEG data has been standard prac-

ice, but even with low-density data, this method is time-consuming,

ubjective, and does not allow for the efficient processing of a large

umber of data sets. Low-density EEG collected in clinical contexts that

an span hours may also preclude manual inspection due to recording

ength. As a result, there remains a current and growing need for soft-

are that standardizes and automates the processing and removal of

rtifacts in low-density EEG data. 
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Fig. 1. Schematic illustrating the various pipelines within 

the HAPPE software package. 
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There is now an extensive collection of automated EEG process-

ng pipelines (e.g., Andersen 2018 ; APP, da Cruz et al. 2018 ; MADE,

ebnath et al. 2020 ; EEG-IP-L, Desjardins et al. 2021 ; HAPPE, Gabard-

urnam et al. 2018 ; Hatz et al. 2015 ; FASTER, Nolan et al. 2010 ; Au-

omagic, Pedroni et al. 2019 ; EPOS, Rodrigues et al. 2020 ). However,

heir reliance on independent component analysis (ICA) to segregate

nd correct artifacts makes them unsustainable for low-density data,

s the limited number of channels provides insufficient independent

omponents for robust artifact isolation. Many of these pipelines also

se standard deviation-dependent approaches to identify outlier data

r channels as artifact-contaminated. These approaches may require

odification to scale down to low-density setups with few channels.

ther software tools built into these fully-automated pipelines to aid

n different stages of artifact detection are most effective when used

ith high-density data or have not been validated in low-density data

PREP, Bigdely-Shamlo et al. 2015 a; SASICA, Chaumon et al. 2015 ;

djusted-ADJUST, Leach et al. 2020 ; ADJUST, Mognon et al. 2011 ; ASR,

ullen et al. 2013 ; MARA, Winkler et al. 2014 ). A recent automated

ega-analysis by Bigdely-Shamlo et al. (2020) introduced a pipeline

hat supports both high-density and low-density data, but only at the

pper bound of low-density channel layouts. Specifically, they tested

heir pipeline using data sets ranging from a Neuroscan 30-channel

eadset (Compumedics Neuroscan) to a Biosemi 256-channel headset

Biosemi B.V.), but found that the density of the headset accounted

or variability in the channel amplitudes across datasets after process-

ng. Several pipelines automate the processing of strictly low-density

ata. Of these options, some are made specifically for a particular pop-

lation ( Cassani et al., 2017 ) or acquisition systems (e.g., James Long

EG Analysis System software, Whedon et al. 2020 ). Others use inde-

endent component analysis to correct artifacts ( Hajra et al., 2020 ),

hich cannot support many low-density setups. Still others offer only

rtifact-rejection approaches (e.g., channel and/or segment rejection),

ome of which target only specific classes of artifact (e.g., eye-blink

rtifacts), and these artifact-rejection methods can cause significant

ata loss without artifact-correction in continuous data first (e.g., EEG

nalysis System software (James Long Company), MINIMADE, Troller-

enfree et al. 2021 ). Thus, there remains a need for standardized pro-

essing solutions to serve the range of low-density EEG configurations

n use and the range of artifacts that occur in EEG data. 

To address this need, we propose a novel pipeline for low-density

EG data (fewer than 32 channels) called HAPPILEE (Harvard Auto-

ated Pre-processing Pipeline Including Low-Electrode Encephalogra-

hy). We apply contemporary approaches to optimize line noise reduc-

ion, bad channel detection, artifact correction from continuous data,

egmentation, and bad segment rejection methods to suit low density
2 
atasets. HAPPILEE is embedded in the HAPPE software package, which

acilitates pre-processing for a variety of analyses and data types ( Fig. 1 ).

o facilitate ERP analyses on low density data, HAPPILEE interfaces with

he HAPPE + ER pipeline within HAPPE ( Monachino et al., 2021 ). Be-

ause modifications for ERP analyses are not density-dependent (with

he exception of the optional bad channel detection step, which uses

APPILEE optimization criteria for low density ERP analyses), spe-

ific details on the optimization of this software for ERP analyses can

e found in Monachino et al. (2021) . The following sections of this

anuscript describe HAPPILEE’s processing steps and outputs, assess

ptimization of these steps for low-density EEG, and demonstrate HAP-

ILEE’s effectiveness with a low-density developmental EEG dataset and

imulated EEG signals relative to other pre-processing approaches (see

ig. 2 for full pipeline schematic). 

.1. Optimization dataset 

The various steps of the HAPPILEE automated pipeline were

ptimized using a subset of developmental EEG files from the

ucharest Early Intervention Project (BEIP) (for full study design,

ee Zeanah et al. 2003 ). The EEG files contributing to this example

ataset may be freely assessed at: https://zenodo.org/record/5,088,346

 Lopez et al., 2021 ). We selected the BEIP dataset as its study de-

ign facilitated testing HAPPILEE on EEG data from children across

 range of caregiving conditions, behavioral/clinical phenotypes, and

ges ( Zeanah et al., 2009 ). The optimization dataset includes resting-

tate EEG from three groups of children living in Romania starting in

001. The first group, referred to as the Care as Usual Group (CAUG),

s composed of children living across six institutionalized care facilities

hroughout Bucharest, Romania. The second group is the Foster Care

roup (FCG), which is composed of children who were removed from

hese institutions through random assignment and placed in a foster care

ntervention. The final group is the Never Institutionalized Group (NIG),

ade up of a community sample of children living with their biological

amilies who have never been placed in institutionalized care or fos-

er care. We selected a subset of thirty EEG files across the three groups

rom the greater dataset (CAUG, n = 8; FCG, n = 8, NIG, n = 14). The av-

rage age at the start of the baseline assessment across the three groups

as 17.40 months, with a range of 6.28–29.98 months (averages per

roup: CAUG = 18.30; FCG = 16.21; NIG = 17.58). The resting-state EEG

or all children was recorded with the James Long system from twelve

calp sites (F3, F4, Fz, C3, C4, P3, P4, Pz, O1, O2, T7 and T8) using a

ycra Electro-Cap (Electro-Cap International Inc., Eaton, OH) with sewn-

n tin electrodes (the two mastoid sites, M1 and M2, were removed due

o poor recording quality across the dataset). 
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Fig. 2. Schematic illustrating the HAPPILEE pipeline’s processing steps. The intermediate output EEG files are indicated by the suffix added after that specific 

processing step in the light blue boxes. The user options for resampling, segmentation, bad data interpolation, segment rejection, and re-referencing steps and 

visualizing several steps in HAPPILEE with the semi-automated setting are also indicated. 
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.2. HAPPILEE data inputs 

HAPPILEE accommodates multiple types of EEG files with different

cquisition layouts as inputs. A single run will support only a single file

ype across files, specified by the user. For .set formated files, the cor-

ect channel locations should be pre-set and embedded in the file (e.g.

y loading it into EEGLAB and confirming the correct locations) prior

o running through HAPPILEE. When running .mat formated files, you

ust have a file with channel locations specified in your folder in order

o run all steps in the HAPPILEE pipeline. If channel locations are not

rovided, you will not be able to do the following: filter to channels of

nterest, detect and reject bad channels, interpolate bad channels, or re-

eference your data. Each batch run of HAPPILEE must include files col-

ected with the same channel layout (company, net type, and electrode

umber) and paradigm (resting-state or event-related), each of which

sers must specify for a given run. HAPPILEE processes data collected

ith any sampling rate, and files within a single run may differ in their

ndividual sampling rates (if this is the case, we strongly recommend

electing the option to resample data to the same frequency to ensure

ubsequent steps perform comparably across files regardless of original

ampling rate). 

.3. Line noise processing 

HAPPILEE addresses electrical noise (e.g., 60 or 50 Hz artifact signal)

hrough the multi-taper regression approach implemented by the Clean-

ineNoise program ( Mullen, 2012 ). Multi-taper regression can detect
 m

3 
nd subtract regular sinusoidal signal at a given frequency (e.g. electri-

al noise) without sacrificing or distorting the underlying EEG signal at

hat frequency or nearby frequencies, drawbacks of the notch-filtering

pproach to line-noise processing ( Mitra and Pesaran, 1999 ). Specifi-

ally, HAPPILEE applies the updated version of CleanLine’s multi-taper

egression (called CleanLineNoise, implemented in the PREP pipeline;

igdely-Shamlo et al. 2015 b) which is more effective in addressing line

oise than the original CleanLine version present in HAPPE 1.0 ( Gabard-

urnam et al., 2018 a) software (purportedly a bug fix in the CleanLine

ode, see Makoto’s pipeline page for unpublished evidence: https://

ccn.ucsd.edu/wiki/Makoto%27s_preprocessing_pipeline#Why_does_IC_

ejection_increase_gamma_power.2C_or_why_is_an_IC_not_broadband- 

ndependent ). The legacy CleanLine version from HAPPE 1.0 ( Gabard-

urnam et al., 2018 ) is available as an option to the user, however

he updated version is registered as the default. CleanLineNoise’s

ulti-taper regression scans for line-noise signal near the user-specified

requency ± 2 Hz, a 4-s window with a 1-s step size and a smoothing tau

f 100 during the fast Fourier transform, and a significance threshold

f p = 0.01 for sinusoid regression coefficients. This process is highly

pecific to the frequency of electrical noise, which the user can specify

o be 60 Hz or 50 Hz. The user may also specify line-noise harmonic

requencies to be similarly cleaned (e.g. 30, 15 Hz, etc.) or neighboring

requencies to be cleaned (e.g. 59 and 61 Hz for a 60 Hz electrical

ignal). Quality control metrics for the degree of regular sinusoidal

ignal removal at line noise frequency/frequencies are automatically

enerated in HAPPILEE and discussed in detail as part of the subse-

uent “HAPPILEE Pipeline Quality Assessment Report ” section of this

anuscript. 

https://sccn.ucsd.edu/wiki/Makoto\04527s_preprocessing_pipeline\043Why_does_IC_rejection_increase_gamma_power.2C_or_why_is_an_IC_not_broadband-independent
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.4. Filtering 

Filtering the EEG signal is important for isolating frequencies of in-

erest and improving signal-to-noise (e.g., for ERP analyses or isolat-

ng frequencies within the range produced by EEG’s electrophysiologi-

al sources) but can also distort the data in undesirable ways if atten-

ion is not paid to filtering settings both alone and in combination with

ther pre-processing steps (e.g., baseline correction, line-noise reduc-

ion steps; see Widmann et al. 2015 and Tanner et al. 2015 for thor-

ugh discussion of issues related to filtering EEG signals). For example,

APPILEE uses CleanLine for line-noise removal rather than band-stop

ltering (aka notch filtering) to avoid signal distortion (e.g., Luck 2005 ).

HAPPILEE uses the EEGLab filter pop_eegfiltnew (a zero-phase

amming-windowed sinc FIR filter) to apply preliminary filtering prior

o detecting bad channels (if user-selected) and employing artifact cor-

ection methods for all files. If processing resting-state EEG or task-based

ata for time-frequency analyses, the filtering at this stage is a band-pass

lter from 1 to 100 Hz. Filtering at this stage of pre-processing allows

he bad channel and artifact correction steps to assess the relevant fre-

uencies for these types of analyses and optimizes performance in the

igher frequency range. If the user selects the ERP option when enter-

ng user-inputs at the start of HAPPE 2.0, HAPPILEE applies a low-pass

00 Hz filter to aid the artifact correction steps that follow but does

ot apply any low-pass filtering at this stage. The liberal 100 Hz low-

ass filter optimizes bad channel detection and artifact-correction per-

ormance with respect to EMG and other high-frequency artifact con-

amination in the data that occurs within but also beyond the higher

requencies typically-included in filtered ERPs. HAPPILEE then auto-

atically interfaces with the HAPPE + ER pipeline for further filtering

pecific to ERPs after artifact correction (e.g., high-pass and low-pass

ltering at user-specified values like 0.1 to 30 Hz, with options for filter

ype. See Monachino et al. 2021 ) for specifics on ERP filtering. Users

ay assess or explore the effects of different filter settings, i.e., filter

ype and frequency boundaries, on artifact-corrected data to optimize

heir ERP filtering using HAPPE’s rerun functionality). 

.5. Bad channel detection (Optional) 

HAPPILEE includes an option to detect channels that do not con-

ribute usable brain data due to high impedances, damage to the elec-

rodes, insufficient scalp contact, and excessive movement or elec-

romyographic (EMG) artifact throughout the recording. Users have the

ption to run bad channel detection or not (in which case all chan-

els are subjected to subsequent processing steps). Various methods

re currently used to detect and remove bad channels across automated

ipelines. However, some common automated detection methods used

or high-density EEG may not be optimal for low-density EEG without

odification, especially those relying heavily on standard deviation-

elated metrics of activity to detect outlier channels. For example, in

APPE 1.0 ( Gabard-Durnam et al., 2018 ), bad channel detection is

chieved by evaluating the normed joint probability of the average log

ower from 1 to 125 Hz across the user-specified subset of included

hannels. Channels whose probability falls more than 3 standard devi-

tions from the mean are removed as bad channels in two iterations

f this bad channel detection step. However, removing channels that

re three or more standard deviations from the mean activity assumes a

ormal distribution of channel activities (via the Central Limit Theorem)

hat we cannot assume with low-density channel numbers ( Altman and

land, 1995 ). Similarly, the FASTER algorithm ( Nolan et al., 2010 ) used

n the MADE pipeline ( Debnath et al., 2020 ) flags channels by measur-

ng each channel’s Hurst exponent, correlation with other channels, and

hannel variance and standardizing the three values with an absolute Z-

core (subject to the same constraints as standard deviations with very

mall samples). Thus, these algorithms require validation before imple-

entation in low-density EEG data. 
4 
Other methods like EEGLab’s Clean Rawdata algorithm ( Kothe and

akeig 2013 , additional code developed by Makoto Miyakoshi, Arnaud

elorme with Scott Makeig) may more readily translate to low-density

EG data. Specifically, Clean Rawdata’s ‘Flatline Criterion,’ can detect

hannels with flat recording lengths longer than a user-specified thresh-

ld of seconds (indicating no data collected at that location). If the chan-

el contains a flatline that lasts longer than the threshold, the channel

s marked bad. Similarly, ‘Channel Correlation Criterion’ sets the mini-

ally acceptable correlation value between the channel in question and

ll other channels. If a channel is correlated at less than the preset value

o an estimate based on other channels, it is considered abnormal and

arked bad. But features like the Line Noise Ratio Criterion, which iden-

ifies whether a channel has more line noise relative to neural signal

han a predetermined value, in standard deviations based on the total

hannel population, should be assessed in the low-density EEG context.

To test the efficacy of FASTER ( Nolan et al., 2010 ), HAPPE 1.0

 Gabard-Durnam et al., 2018 ), and Clean Raw data functions and de-

ermine the optimal criterion values for the detection of bad channels

n low density data, we compared a series of thirty-three automated op-

ions to a set of manually identified bad channels for nineteen files in

he BEIP dataset. For manual identification of bad channels, we took

he ratings of three field experts and only selected files where agree-

ent across reviewers was reached, ensuring that we were using clear-

ut cases of good and bad channels within the optimization dataset.

hese files included channels that were bad for a variety of reasons and

ad variability in how many bad channels existed per file. For auto-

ated bad channel rejection, the files were run through the HAPPE 1.0

 Gabard-Durnam et al., 2018 ) legacy detection method for bad channels

nd the FASTER ( Nolan et al., 2010 ) detection method used in the MADE

ipeline ( Debnath et al., 2020 ), as well as a number of iterations of the

lean Rawdata function and combinations of Clean Rawdata with spec-

rum evaluation to optimize channel classification (shown in Table 1 ).

ote that for iterations of Clean Rawdata with Flatline Criterion in-

luded, the Flatline default of 5 s was determined to be sufficient for

etecting flat channels and was not manipulated further. We evaluated

he outputs from each criterion for bad channel detection relative to the

anually selected channels by summing the number of false negatives

nd false positives for each file and calculating the overall accuracy rate

cross files for that set of automated parameters. False negatives refer

o channels that were manually marked as bad but not flagged as bad

y the pipeline. False positives refer to channels that were manually

arked ‘good’ but were marked bad by the pipeline. An extra emphasis

as placed on finding the settings with high accuracy that produced the

owest number of false positives in order to avoid getting rid of usable

hannels in the low-density dataset. HAPPILEE’s optimal settings pro-

uced 12 false negative and 5 false positive channels across all 19 files

228 total channels), with an overall accuracy rate of 95.5%. 

HAPPILEE combines EEGLab’s Clean Rawdata functions with power

pectral evaluation steps as follows. HAPPILEE first runs the Clean

awdata ‘Flatline Criterion,’ to detect bad channels with flat recording

engths longer than 5 s (indicating no data collected at that location).

fter flat channels have been removed, HAPPILEE uses Clean Rawdata’s

Line Noise Ratio Criterion’ with a threshold of 2.5 standard deviations

channels with line noise: neural data ratios greater than 2.5 standard

eviations are marked as bad) and ‘Channel Correlation Criterion’ with

 minimal acceptable correlation of 0.7 to detect additional bad chan-

el cases. Finally, HAPPILEE includes a spectrum-based bad channel de-

ection step following the Clean Rawdata functions. While the HAPPE

.0 ( Gabard-Durnam et al., 2018 ) method of legacy detection proved

o be insufficient for our low-density dataset (see Table 1 ), evaluating

he joint probability of average log power from 1 to 100 Hz was useful

or optimizing bad channel detection alongside Clean Rawdata. A spec-

rum evaluation step with thresholds of − 2.75 and 2.75 was included

o optimize bad channel detection accuracy. Thus, HAPPILEE achieves

ad channel detection that is suitable for low density data and expands

he classes of bad channels that can be detected relative to HAPPE 1.0
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5 
 Gabard-Durnam et al., 2018 ) and MADE pipelines’ ( Debnath et al.,

020 ) prior automated pipeline options. 

.6. Artifact correction in continuous data 

Raw EEG data may contain a number of artifacts (e.g., from par-

icipant motion, electromyogenic activity, eye movements/blinks) that

ust be addressed during processing. Historically, artifact removal has

een achieved via manual data inspection, where artifact-laden time-

oints are deleted from the data, including artifact-free data from un-

ffected electrodes (i.e. artifact rejection approach). HAPPILEE instead

ses wavelet thresholding methods for artifact correction (correcting

rtifacts without removing any timepoints) first to allow for fewer seg-

ents or trials to be rejected in subsequent artifact rejection steps and

ddress artifacts that would survive segment rejection but could still im-

act the integrity of further analyses. This artifact correction approach

s performed on each electrode independently in HAPPILEE, so it is

ppropriate for all channel densities down to single-electrode record-

ngs, and its performance is channel-density independent (i.e., wavelet-

hresholding will not perform differently in higher- vs. lower-electrode

ensities). These properties make wavelet-thresholding an excellent op-

ion for serving a variety of low-density EEG layouts. 

Wavelet-thresholding refers to a series of three steps performed on

ach electrode: 

Step 1) Apply the wavelet transform. Each electrode’s time series is

subjected to a wavelet transform by fitting a wavelet function to

the EEG data to represent the signal and parse it into multiple

frequency ranges (akin to frequency bands). Wavelet functions

are orthonormal basis functions that come in a variety of shapes

(called families) and are used for a variety of signal compres-

sion, denoising, and representation applications (including the

authors’ personal favorite of detecting Van Gogh forgery paint-

ings by fitting wavelet functions, Jafarpour et al., 2009 ). Wavelet

functions used with electroencephalography resemble the oscil-

latory shape of EEG data (see Fig. 5 for examples in optimiza-

tion section below). These wavelet functions also have excellent

temporal resolution, so they can accurately represent both time

and frequency information simultaneously. The wavelet trans-

form passes the selected wavelet function over the EEG signal

and produces a series of coefficients to describe how the wavelet

function changed to fit the EEG signal’s fluctuations across the en-

tire timeseries. Importantly, poor function selection could result

in poor fitting of the EEG signals, so the type of wavelet func-

tion used is important for the integrity of artifact-correction. The

transform also separates the EEG signal into multiple frequency

ranges and coefficients evaluate fluctuations in the signal within

each frequency range separately. In this way, the wavelet trans-

form operates like a frequency filter on the EEG signal, though

one that is subsequently completely reversed and leaves no trace

in the retained EEG data. The wavelet function has a resolution

level (i.e., level of decomposition) associated with it that deter-

mines how many of these frequency ranges the EEG signal should

be separated out into, with increasing resolution levels here pars-

ing the lower frequencies into finer frequency bins. If the res-

olution level is not determined appropriately, unnecessary loss

of low-frequency information can occur during thresholding (de-

scribed below). Once the wavelet transform separates out and fits

the EEG signal in these frequency bins in Step 1, artifacts may be

detected in Step 2. 

Step 2) Threshold the data to isolate artifact signal. The wavelet

transform coefficients that describe the EEG signal within each

frequency bin are subjected to a thresholding procedure to sep-

arate out artifact signal from neural signal. This feature allows

for frequency-band-specific artifact detection relative to neural

data in those same frequencies, which is a key component of
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wavelet-thresholding’s success in EEG signals. Given that artifact

signal is larger than the neural signal found at the same frequen-

cies across all classes of artifact, and occurs more inconsistently

throughout the timeseries than neural-related fluctuations, the

wavelet coefficients reflecting these properties are separated out

as artifact-signal to be removed from the data using a threshold-

ing method and rule. If the wavelet resolution level is not set

appropriately, low-frequency neural data, which typically have

higher amplitudes than higher-frequency data in EEG signals, can

be mistakenly removed as artifacts. There are multiple methods

for determining the threshold for determining signal to be arti-

fact vs. neural. HAPPILEE uses an empirical Bayesian method that

learns from each individual’s EEG where to set the threshold and

is less sensitive to outlier effects ( Clyde and George, 2000 ). This

threshold may be determined and applied across all frequency

ranges (level-independent threshold) or determined individually

for each frequency range based on the characteristics of the signal

in that frequency range (level-dependent threshold). HAPPILEE

uses a level-dependent threshold to best fit the artifact properties

occurring within each frequency range. Once the threshold has

been applied to determine which wavelet coefficients (reflecting

parts of the EEG signal) are above the threshold, they can be re-

moved as artifact-related signal. There are also multiple methods

for treating these thresholded coefficients in terms of how they

are separated from the rest of the signal called threshold rules,

but HAPPILEE uses a hard threshold that completely removes the

sub-threshold coefficients from the data (i.e., completely sepa-

rates the signal classified as neural from the artifact-related sig-

nal). Other rules like the soft threshold instead downweight the

sub-threshold coefficients closest to the threshold cutoff in the

data, for example. If these steps together are not optimized for

EEG signals, incomplete artifact correction, or attrition of neu-

ral signal can both occur, so great care was taken in optimiz-

ing these parameters for HAPPILEE (described below). Once the

artifact-signal is fully separated from the neural signal, it can be

removed from the electrode timeseries without disturbing the un-

derlying neural signal at those timepoints via the inverse wavelet

transform and subtraction. 

Step 3) Apply the inverse wavelet transform and subtract thresh-

olded (artifact) signal. Finally, the artifact-related coefficients

are transformed back from wavelet-coefficients to the electrode’s

signal timeseries using the inverse of the wavelet transform

function. The HAPPILEE wavelet function family allows for this

transform without distortion to the data in phase, amplitude,

or frequency space. This inverse transform thus results in an

artifact-timeseries that is then simply subtracted from the elec-

trode’s original timeseries, resulting in an artifact-corrected time-

series. Because waveleting is both a time- and frequency-specific

method, the artifact timeseries will be 0 where no artifact is tem-

porally present in the data, and thus this subtraction does not dis-

turb the clean EEG signal surrounding the artifact-contaminated

segment at all (this distinguishes wavelet-thresholding from other

artifact-correction strategies like independent component analy-

sis that in practice do not consistently meet this standard in the

artifact-labeled components). The wavelet-thresholded artifact-

corrected signal may then continue through pre-processing steps

like segmentation. 

Through only three steps, the wavelet-thresholding process contains

any parameters that may be optimized to improve artifact-correction

erformance. The final wavelet-thresholding parameters implemented

n HAPPILEE are as follows: ‘Wavelet Family,’ ‘coif4;’ ‘Level of Decompo-

ition,’ ‘10;’ ‘Noise Estimate,’ ‘Level Dependent;’ ‘Thresholding Method,’

Bayes;’ ‘Threshold Rule,’ ‘Hard’. The approaches and steps to optimize

avelet-thresholding artifact correction are detailed below, with addi-
6 
ional details about each component of the wavelet-thresholding pro-

ess. 

.6.1. Wavelet threshold optimization approaches 

Three approaches were taken to test and optimize automated wavelet

hresholding-based artifact correction in HAPPILEE using the BEIP

ataset. Prior to artifact correction testing, all files were initially filtered

nd subjected to line noise correction. The approaches are detailed be-

ow. 

The first approach (the clean vs. artifact approach) involved select-

ng two 30 s segments within each participant’s EEG file. The first 30 s

egment was heavily artifact laden while the second 30 s segment was

etermined to be clean and without considerable artifact by experienced

esearchers. This approach facilitated testing whether artifact was effec-

ively and accurately removed via wavelet thresholding. That is, optimal

rtifact correction performance would be characterized by (1) substan-

ial (artifact) signal removal for the artifact-laden 30 s file, indicating

ensitivity to artifacts, and (2) minimal signal removal for the clean 30 s

le from the same individual, indicating specificity in signal removal

onstrained to artifact. High levels of signal removal in the clean 30 s

les would indicate unnecessary data loss, while low levels of signal

emoval in the artifact-laden 30 s files could indicate insufficient per-

ormance. Additionally, to ensure that artifact removal was not biased

o certain frequencies, data correlations pre- and post-processing were

valuated at key frequencies spanning all canonical frequency bands in

he clean and artifact-laden segments. Examples of the clean and artifact

ignals within an individual (before and after wavelet thresholding) are

rovided in Fig. 3 . 

The second approach (artifact-addition approach) used known arti-

act signals to establish how much artifact could be removed without

istorting underlying neural signals during wavelet thresholding. In the

bsence of a ground-truth neural signal, we used the 30 s clean files

rom the first approach as the signal to be recovered during artifact-

orrection. We then isolated artifact timeseries by running ICA on the ar-

ifact laden 30 s files and selecting approximately 2 components per indi-

idual that were determined to be artifact with minimal neural data via

isual inspection and automated classification through both the ICLa-

el and Multiple Artifact Rejection Algorithm options. We subsequently

dded those artifact timeseries to the clean 30 s data segment from the

ame individual (see Supplemental File 1 for types of artifacts added

or each file). These 30 s files with added artifact were then subjected

o wavelet-thresholding and compared (via correlation coefficients) to

he clean 30 s files run through wavelet-thresholding to determine how

uch of the added artifact was removed during the artifact-correction

tep (example from single participant in Fig. 4 ). Higher correlation co-

fficients would indicate better recovery of the clean EEG signal and

etter removal of the added artifact during the wavelet-thresholding

tep. (The post-wavelet thresholded clean files were used as the compar-

son because even these clean files had some minor artifacts that could

e removed during artifact correction, so the post-wavelet-thresholded

ersions were the cleanest option for comparisons). 

For the third approach, we used simulated EEG data with artifact

dded to it in order to have a “ground truth ” signal that we could attempt

o recover with waveleting. To create the simulated EEG data, we used

ode from Bridwell et al. (2018) . In short, the simulated EEG consisted of

our signals. The four signals had distinct spatial patterns and frequency

anges (1.00–3.91, 3.91–7.81, 7.81–15.62, and 15.62–31.25 Hz). For a

ore thorough description on how the simulated signals were created,

see Bridwell et al. 2018 ). After creating the simulated EEG data, we

dded various developmental artifacts and adult eye blinks to the data

o test multiple waveleting settings and wavelet thresholding in general.

o get the blink artifact, we used a clear blink independent component

IC) from an adult participant (see Leach et al. 2020 for the specific study

etails). This IC was selected based on both an automated artifactual IC

etection algorithm and visual inspection by two researchers with over

ve years of EEG and at least two years of ICA experience. For the de-
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Fig. 3. EEG signal before and after wavelet thresholding with the following parameters that were optimized for low density data: ‘Wavelet Family,’ ‘coif4;’ ‘Level of 

Decomposition,’ ‘10;’ ‘Noise Estimate,’ ‘Level Dependent;’ ‘Thresholding Method,’ ‘Bayes;’ ‘Threshold Rule,’ ‘Hard.’ Two files from the same participant in the example 

dataset are shown with 10 s of data extracted from the clean 30 s segment (A) and artifact-laden 30 s segment (B). The EEG signal before processing is shown in the 

left panel. The EEG signal after wavelet thresholding is shown in the right panel. All scales are in microvolts. 

Fig. 4. EEG signal before and after wavelet thresholding with the following parameters that were optimized for low density data: ‘Wavelet Family,’ ‘coif4;’ ‘Level of 

Decomposition,’ ‘10;’ ‘Noise Estimate,’ ‘Level Dependent;’ ‘Thresholding Method,’ ‘Bayes;’ ‘Threshold Rule,’ ‘Hard.’ Two files from the same participant in the example 

dataset are shown with 10 s of data extracted from the clean 30 s segment (A) and artifact-added 30 s segment (B). The EEG signal before processing is shown in the 

left panel. The EEG signal after wavelet thresholding is shown in the right panel. All scales are in microvolts. 
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elopmental artifact, we pulled eight ICs from the BEIP dataset used

bove in the artifact addition approach. After adding the artifact to the

imulated EEG data, we did a 1 Hz highpass and 35 Hz lowpass filter.

ollowing this, we epoched the data into two-second epochs (50% over-

ap) to prepare the data for wavelet thresholding and/or artifact rejec-

ion. For artifact rejection, we used a − 100 to 100 𝜇V voltage threshold

o identify bad epochs. We also required both frontal electrodes to ex-

eed this threshold in order to classify an epoch as containing a blink.

n order to test how well wavelet thresholding removes artifact with-

ut removing neural activity, we computed the power spectral density

PSD) on the original simulated signal (no artifact added) and compared

hat to the PSD of the signal after pre-processing with various wavelet

hresholding parameters when either one or two developmental arti-

actual independent components and an adult eye blink component are

dded to the simulated signal. In addition, we looked at how the prepro-

essed data might differ when only artifact rejection is run compared to

hen waveleting is run before artifact rejection. This gave us two pre-

rocessing conditions: (1) Artifact rejection only (no wavelet threshold-

ng) and (2) Wavelet thresholding followed by artifact rejection. 

These three distinct approaches facilitated optimizing and evaluat-

ng the wavelet thresholding method for artifact removal in low-density

ata in multiple ways. Importantly, the wavelet thresholding approach

roadly includes decomposing the EEG signal via a wavelet transform,

etermining a threshold value or values used to dissect data into the por-

ion to be retained and the portion to be rejected, removal of the rejected

ata components, and reconstruction of the remaining signal. Each of

hese steps may be accomplished multiple ways across wavelet thresh-

lding methods. Here, five key parameters in the wavelet thresholding

rocess were manipulated and tested to optimize wavelet thresholding

erformance in this context, specifically: wavelet family, wavelet reso-

ution (i.e., level of data decomposition), noise estimate method, thresh-

lding level, and threshold rule. Each parameter was manipulated one at

 time within a default set of wavelet thresholding parameters and tested

sing the clean vs. artifact approach and artifact-added approach in the

EIP dataset. The initial default set of wavelet thresholding parame-

ers was chosen based on preliminary visual inspection of performance

cross a broader range of parameters prior to optimization and was as

ollows: ‘Wavelet Family,’ ‘coif5;’ ‘Level of Decomposition,’ ‘8;’ ‘Noise

stimate,’ ‘Level Dependent;’ ‘Thresholding Method,’ ‘Bayes;’ ‘Threshold

ule,’ ‘Soft.’ Subsequent optimization of each parameter is described in

etail below. 

.6.2. Wavelet family 

The wavelet-thresholding method first subjects each electrode’s time

eries to wavelet transform by fitting a wavelet function to the data. The

avelet transform produces a series of coefficients to describe the EEG

ignal’s fluctuations across multiple frequency ranges. The wavelet func-

ion consists of both a wavelet family, dictated by the mother wavelet

hape (e.g., the Coiflet mother wavelet is more symmetric than the

aubechies mother wavelet), and the wavelet order, which modifies the

other wavelet shape (see Fig. 5 ; i.e., Coiflet order 4 wavelet has 8 van-

shing moments in the function). To find the optimal wavelet function

o carry out stationary wavelet transform, we tested the Coiflets family

orders 3, 4, and 5), the Daubechies family (orders 4 and 10), and the

ymlets family (order 4). We selected these family/order combinations

s they share shapes similar to those found in EEG signals and they are

ll orthogonal wavelet functions, which optimizes decomposition and

econstruction of the EEG signal from the wavelet transform ( Strang and

guyen, 1996 ). Moreover, prior literature indicates these wavelet fam-

lies and specific orders have performed well on electrophysiologi-

al data ( Al-Qazzaz et al., 2015 ; Alyasseri et al., 2017 ; Harender and

harma, 2018 ; Lema-Condo et al., 2017 ; Nagabushanam et al., 2020 ).

sing these wavelet families, we evaluated whether there was biased

ata removal at any of the data frequencies in the clean 30 s seg-

ents by evaluating correlations between data pre-waveleting and post-

aveleting at specific canonical frequencies. We also compared data re-
8 
oval rates between the clean files and the 30 s artifact laden files. As

 second analysis, we evaluated which wavelet family and order combi-

ation removed the most added artifact across frequencies (i.e., which

avelet facilitated the greatest correlation between the artifact added

les and the clean files post-processing). 

After running the various wavelet family/order options, we found

here were not meaningful differences between several wavelet fam-

ly/order options ( Tables 2 and 3 ). Specifically, performance did not

iffer between coif4, coif5, db4, and sym4 options across the clean vs.

rtifact-laden and artifact addition tests (e.g., correlation values in the

rtifact-addition tests were identical to the hundredths place). Coif4 was

elected as the wavelet implemented in HAPPILEE as this wavelet/order

lso performed very well in data collected from a saline-based system

EGI), suggesting its performance may generalize more broadly than the

ther options tested here ( Monachino et al., 2021 ). 

.6.3. Wavelet resolution/level of data decomposition 

Following wavelet family/order selection, we manipulated the res-

lution of the wavelet that affects the level of data decomposition in

avelet thresholding. Specifically, this level of decomposition deter-

ines how fine-grained the frequency bands are in which data cor-

ection occurs. Importantly, in the current code, the data sampling

ate (not for example, the frequencies retained through initial filtering)

etermines which frequencies fall into different levels of decomposi-

ion. For example, the first level of decomposition for a file sampled at

000 Hz (regardless of frequency filtering) would split data into two

alves around 500 Hz. If that file had been resampled to 500 Hz prior

o wavelet decomposition, the first level of decomposition would now

plit data into halves around 250 Hz. The default decomposition level

plits data down to ≤ 1 Hz. We tested decomposition levels of ∼4, 2,

nd 1. The 4 Hz decomposition resulted in increased data removal in

he lower frequencies relative to other frequencies of the clean data, re-

ulting in data correlations pre-/post-thresholding of less than 0.5 (e.g.,

 = 0.48 at 2 Hz). This pattern indicated the need for further decomposi-

ion levels to avoid over-rejecting low frequency data that is not artifact-

aden (low frequencies were rejected at similar rates in the artifact-laden

ata). In the clean vs. artifact files, we saw no difference in which data

as rejected and retained when comparing levels 2 and 1 Hz, though

 Hz provides coverage down to the filtering cutoff for time-frequency

nalyses. Therefore, HAPPILEE decomposes data into detail coefficients

or frequencies above approximately 1 Hz to evaluate artifacts within

ach frequency range for time-frequency-related analyses. For event-

elated-potential decomposition optimization where signals below 1 Hz

re relevant, HAPPILEE interfaces with the HAPPE + ER pipeline and

ses those settings, so we refer readers to the HAPPE + ER manuscript

 Monachino et al., 2021 ). 

.6.4. Noise (Artifact) estimation level 

Once the level of decomposition is set, the noise estimate parameter

s chosen to establish either a threshold for each level of decomposition

level dependent threshold) or establish a threshold that operates across

ll of the levels of decomposition (level independent threshold). The

hreshold(s) determine which wavelet coefficients describe data that is

rtifact-laden (i.e., coefficients describing larger amplitude changes, or

oise) and will be removed from the EEG data during this artifact cor-

ection step. Due to the unavailability of level dependent thresholding

or the wavelet function used at the time of its conception, HAPPE 1.0

 Gabard-Durnam et al., 2018 ) employed level independent threshold-

ng (with a different threshold method and rule as well). We antici-

ated that level dependent thresholding would improve artifact detec-

ion specificity because of its ability to scale within each frequency range

e.g., artifacts in gamma frequencies have smaller amplitudes than ar-

ifacts in delta frequencies), rather than apply across all frequencies at

nce (which may over-penalize low-frequency clean EEG data that has

igher amplitudes than higher-frequency clean EEG data). The default
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Fig. 5. Visualization of the three wavelet families with selected orders tested to find the optimal wavelet function to carry out stationary wavelet transform on low 

density data. 

Table 2 

Artifact-laden vs. Clean Approach. Correlations between the EEG signal before wavelet thresholding and the EEG signal after wavelet thresholding for the wavelet 

parameters tested on the artifact-laden and clean 30 s segments. The r values of the wavelet parameters that are included in the final code are bolded. Asterisks 

denote default wavelet parameters. 
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et of parameters was run with both level dependent and level inde-

endent thresholding and confirmed our prediction. With the improved

hresholding method and rule included in the default parameters, the

evel independent threshold now heavily over-rejected the clean data

resulting in a correlation pre-/post-thresholding of r = 0.02), removing

early all of the data (and a similar level of data removal was observed in

he artifact-laden data). (Note: this performance differs from HAPPE 1.0

 Gabard-Durnam et al., 2018 ) due to the other wavelet thresholding pa-

ameter changes included in the new default settings of HAPPILEE, and

oes not reflect the functionality of wavelet-independent thresholding

n HAPPE 1.0). There was no meaningful difference between level inde-

endent and level dependent thresholding in how much artifact was re-

oved in the artifact-added approach. This pattern of results suggested

he level dependent threshold was just as effective at removing artifact
 t  

9 
s the level independent threshold without also removing underlying

lean neural signal. As a result, a level dependent threshold was cho-

en in order to preserve data without compromising artifact correction

uccess. 

.6.5. Thresholding method and threshold rule 

Wavelet coefficients are then subjected to thresholding, (here, in

 level-dependent way) such that coefficients with values smaller

han a determined threshold for that level have their contribution to

he data substantially suppressed (similar to Jansen, 2001 ; You and

hen, 2005 ). For EEG data, this effectively isolates the artifact sig-

als within each frequency level (which are then subtracted out of

he original EEG signal to clean it). A number of high performing op-

ions to determine the thresholds separating artifact from clean EEG
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Table 3 

Artifact-added approach . Correlations between the EEG signal before wavelet thresholding and the EEG signal after wavelet thresholding for the wavelet parameters 

tested on the artifact-added 30 s segments. The r values of the wavelet parameters that are included in the final code are bolded. Asterisks denote default wavelet 

parameters. 
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ave been established in the literature ( Anumala and Kumar Pul-

akura, 2018 ; Estrada et al., 2011 ; Geetha and Geethalakshmi, 2011 a;

eetha and Geethalakshmi, 2011 b; Guo et al., 2020 ; Jiang et al.,

007 ), specifically ‘Empirical Bayes’ ( Johnstone and Silverman, 2004 ),

SURE’ ( Donoho and Johnstone, 1995 ), ‘Universal’ ( Donoho, 1995 ),

nd ‘Minimax’ ( Donoho and Johnstone, 1998 ) thresholding approaches.

APPE 1.0 ( Gabard-Durnam et al., 2018 ) originally included a Uni-

ersal Threshold approach, but we aimed to examine these additional

igh-performing options as well to find the best fit for the current ver-

ion of the pipeline. Relatedly, we evaluated available threshold rules

or the various thresholding methods, specifically ‘Soft’ ( Guo et al.,

002 ; Donoho, 1995 ), ‘Median’ ( Abramovich et al., 1998 ; Clyde and

eorge, 2000 ; Johnstone and Silverman, 2005 ), and ‘Hard’ ( Guo et al.,

002 ). Of note, not all thresholding methods are compatible with all

hresholding rules. For example, the median rule is specific to the thresh-

lding method ‘Bayes’ as it involves using the median posterior gener-

ted by the Bayesian algorithm to determine the threshold. Soft and

ard threshold rules are different in how they treat the coefficients near

he threshold (in soft thresholding, these coefficients are shrunk while

hey are unaffected in hard thresholding). For thresholding options, we

ound minimal difference between options when tested on the artifact-

dded data, but we were able to eliminate ‘SURE’ due to over-rejecting

ata in the clean files (resulting in a correlation pre-/post-thresholding

f r = 0.77). ‘Bayes’ narrowly outperformed ‘Minimax’ on the artifact-

dded data ( Table 3 ), but the reverse was true for our clean and artifact-

aden data ( Table 2 ). ‘Bayes’ was chosen as the thresholding method as

t considers the uncertainty of the potential artifact and has been shown

o result in more accurate denoising of signals generally. Moreover, the

ayes algorithm increases performance with increased data samples (as

t can adjust its certainty estimates about artifact from more data), so

erformance on these 30 s files is a conservative reflection of this gen-
10 
ral performance. For threshold rule, on average, the median and hard

hresholds removed more of the clean and artifact-laden file data, espe-

ially at the lower frequencies (e.g., at 2 Hz in clean data: soft thresh-

ld r = 0.84, median threshold r = 0.79, hard threshold r = 0.63, see

able 2 ). However, visual inspection of data cleaned using soft vs. hard

hresholds revealed that hard thresholds appeared to better remove ar-

ifact (see Fig. 6 ). Therefore, this step was further explored using the

imulated signals as described below and ultimately a Bayesian method

ith hard thresholding rule was implemented. 

For the third approach with simulated data that had real artifact

dded to it, we tested which combination of noise estimation level and

hreshold rule performed best in terms of removing artifact while retain-

ng the ground-truth underlying simulated signal. We compared combi-

ations of level dependent and level independent estimation methods

ith soft, median, and hard threshold rules ( Fig. 7 ). We tested on the

imulated signal with an adult eye blink component added and either

ne developmental artifactual IC added or a combination of two de-

elopmental artifactual ICs added that reflected a variety of different

rtifact types and combinations to ensure generalization of the results

cross artifact conditions (The specific ICs added to the simulated sig-

al are provided above each plot in Fig. 7 ). We found that level de-

endent thresholding far outperformed level independent thresholding.

his is not surprising given that level dependent thresholding scales

ithin each frequency range (and thus may be more sensitive to dif-

erent artifact profiles across frequencies) rather than evaluating all fre-

uencies together as is the case for level independent thresholding (see

ig. 7 , level-independent results all lie along the x-axis). Moreover, level

ependent thresholding with a hard or median threshold rule outper-

ormed level dependent thresholding with a soft threshold rule in terms

f visually returning the simulated signal’s spectrum profile. The hard

hreshold rule narrowly outperformed the median threshold rule (es-
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Fig. 6. EEG signal before and after wavelet thresholding with the following parameters: ‘Wavelet Family,’ ‘coif5;’ ‘Level of Decomposition,’ ‘10;’ ‘Noise Estimate,’ 

‘Level Dependent;’ ‘Thresholding Method,’ ‘Bayes;’ ‘Threshold Rule,’ ‘Soft’ (middle panel) and ‘Wavelet Family,’ ‘coif5;’ ‘Level of Decomposition,’ ‘10;’ ‘Noise Estimate,’ 

‘Level Dependent;’ ‘Thresholding Method,’ ‘Bayes;’ ‘Threshold Rule,’ ‘Hard’ (right panel). Two files from the example dataset are shown with 10 s of data extracted 

from the clean 30 s segment (A) and artifact-laden 30 s segment (B). The EEG signal before processing is shown in the left panel. The EEG signal after wavelet 

thresholding with a soft threshold is shown in the middle panel. The EEG signal after wavelet thresholding with a hard threshold is shown in the right panel. All 

scales are in microvolts. 

Fig. 7. Plots of the power spectral density for the simulated signal without artifact and the simulated signal with an adult eye blink component added and either 

one developmental artifactual IC added (A; top panel) or two developmental artifactual ICs added (B; bottom panel) following wavelet thresholding. 
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ecially for lower frequencies). Together these results helped solidify

he decision to use level dependent thresholding with a hard threshold

ule as the combination of parameters that best removed artifact while

etaining the ground-truth underlying signal. 

Taken together, the final wavelet-thresholding optimized parame-

ers implemented in HAPPILEE are again as follows: ‘Wavelet Family,’

coif4;’ ‘Level of Decomposition,’ ‘10;’ ‘Noise Estimate,’ ‘Level Depen-

ent;’ ‘Thresholding Method,’ ‘Bayes;’ ‘Threshold Rule,’ ‘Hard’. These

arameters ensure optimized wavelet-thresholding based artifact cor-
ection occurs in EEG data. a  

11 
.7. Segmentation (Optional) 

After artifact correction, HAPPILEE includes an optional data seg-

entation step along with several additional artifact rejection steps

o further optimize processing. For data without event markers (e.g.,

esting-state EEG), regularly marked segments of any duration speci-

ed by the user are generated for the duration of the recording (e.g.,

 s segments). For low density data with event markers (e.g., event-

elated EEG data or ERP designs), data can be segmented around events

s specified by user inputs (ERP-processing is supported, including base-
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Table 4 

Comparison of various segment rejection options tested on nineteen files from the example dataset. P values are calculated from t-tests comparing the number 

of remaining segments for each parameter following automated rejection to the number of segments remaining following manual rejection. 
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ine and timing offset correction; see Monachino et al., 2021 for more

nformation). 

Users with data files where segment rejection would lead to an un-

cceptably low remaining number of segments for analysis may choose

n optional post-segmentation step involving the interpolation of data

ithin individual segments for channels determined to be artifact-

ontaminated during that segment, as implemented by FASTER software

 Nolan et al., 2010 ). Each channel in each segment is evaluated on the

our FASTER criteria (variance, median gradient, amplitude range, and

eviation from mean amplitude; Nolan et al. 2010 ), and the Z score (a

easure of standard deviation from the mean) for each channel in that

egment is generated for each of the four metrics. Any channels with one

r more Z scores that are greater than 3 standard deviations from the

ean for an individual segment are marked bad for that segment. These

riteria may identify segments with residual artifacts. Subsequently, for

ach segment, the channels flagged as bad in that segment have their

ata interpolated with spherical splines, as in FASTER ( Nolan et al.,

010 ). This allows users to maintain the maximum number of avail-

ble segments, while still maximizing artifact rejection within individ-

al segments. However, we caution users from implementing this op-

ion in cases where channels are distributed with significant distance

etween them as the interpolation process would pull data from dis-

al channels that does not reflect the appropriate activity profile for

hat scalp space. Effects of interpolation on data may depend on exper-

ment, layout ( Melnik et al., 2017 ; Bigdely-Shamlo et al., 2015 a), and

nterpolation method ( Courellis et al., 2016 ; Petrichella et al., 2016 ;

obeson, 1997 ). 

The majority of users, including those who wish to avoid interpo-

ating data within individual segments, may instead choose to reject

egments that are determined to still be artifact-contaminated. HAP-

ILEE includes three segment rejection options. Criteria for rejection

nclude a choice of joint-probability criteria, amplitude-based criteria,

r a combination of joint-probability criteria with amplitude-based cri-

eria. Joint-probability criteria considers how likely a segment’s activity

s given the activity of other segments for that same channel, as well as

ther channels’ activity for the same segment. The assumption is that

rtifact segments should be the rare segments with activity several stan-

ard deviations apart relative to the rest of the data. Amplitude-based

riteria sets a minimum and maximum signal amplitude as the artifact

hreshold, with segments being removed when their amplitude falls on

ither side of this threshold. HAPPILEE allows the user to specify their

inimum and maximum allowable amplitudes. Users may also specify a

ombined approach with joint-probability criteria and amplitude-based

riteria that removes outlier segments that fail either standard devia-

ions or the signal amplitude criteria. 

o  

12 
To test the efficacy of the three segment rejection options and deter-

ine the optimal criterion values for the rejection of segments in low

ensity EEG data, we compared a series of ten automated options to a

et of manually rejected segments for fourteen files in the BEIP dataset.

e manipulated the standard deviation values for joint-probability re-

ection, the amplitude values for amplitude-based rejection, and tested

ombinations of different joint-probability standard deviations with am-

litude criteria. The number of segments rejected for each of these auto-

ated rejection approaches was compared to the segments rejected via

anual inspection as the gold standard approach using paired t-tests

 Table 4 ). Amplitude-based rejection alone did not sufficiently match

he manual rejection rates. However, the number of segments rejected

sing joint-probability criteria of 2 standard deviations alone or in com-

ination with amplitude criteria (here, − 150 and 150 microvolts) were

ot significantly different from the number of segments rejected manu-

lly (both p > 0.1). 

Segment rejection performance was further evaluated for these two

pproaches by comparing the identity of segments rejected via the au-

omated approach to the manually rejected segments by summing the

umber of false negatives and false positives for each file and calculating

he overall accuracy rate across files compared to the manual rejection

lassification (i.e., did HAPPILEE reject the same segments that were re-

ected manually). The joint probability criterion alone (using 2 standard

eviations) achieved the higher accuracy rate of 91.2% across all files

ut joint-probability with amplitude also did well (91.0% accuracy) (see

able 5 ). HAPPILEE therefore includes three segment rejection options

ith the following recommendations. For data with sufficient channels

e.g., here 12 was sufficient but we did not test performance on sparser

onfigurations), segment rejection via joint-probability criteria is rec-

mmended. This setting is also recommended for users combining data

ollected across different systems or ages where the overall signal am-

litude may differ across files. Users performing analyses in the time

omain (as for ERP paradigms) may opt to include amplitude-based cri-

eria. For users with very low-density configurations where the joint-

robability criteria relying on standard deviations may not perform as

ell as it did here, amplitude-only criteria may be used for segment

ejection. 

.8. Interpolation of bad channels (if bad channel detection was run) 

For all HAPPILEE runs that included bad channel detection, channels

arked as bad are now subject to spherical interpolation (with Legendre

olynomials up to the 7th order) to repopulate their signal. The identity

f all interpolated channels, if any, for a file are recorded in the HAP-

ILEE processing report for users who wish to monitor the percentage

r identity of interpolated channels in their datasets before further anal-
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13 
sis. This interpolation step is available for all files formats except for

mat formats without channel locations as the interpolation step requires

lectrode location information to interpolate appropriately spatially.

owever, similar to segment interpolation outlined above, we caution

sers against including these interpolated channels in analyses in cases

here channels are distributed with significant distance between them

s the interpolation process would pull data from distal channels that

oes not reflect the appropriate activity profile for that scalp space.

ffects of interpolation on data may depend on experiment, layout

 Melnik et al., 2017 ; Bigdely-Shamlo et al., 2015 a), and interpolation

ethod ( Courellis et al., 2016 ; Petrichella et al., 2016 ; Robeson, 1997 ).

ecause this step is not optional when bad channel detection is run, if

 user wishes to omit these interpolated channels from analyses, a list

f interpolated channels can be found on the data quality assessment

eport. 

.9. Re-referencing (Optional) 

HAPPILEE offers users the choice to re-reference the EEG data if they

ish. While there is no ideal reference for EEG, re-referencing with one

f several practical if imperfect options can reduce artifact signals that

xist consistently across electrodes, including residual line-noise, and re-

over signal from online reference channels of interest. If re-referencing,

he user may specify either re-referencing using an average across all

hannels (i.e., average re-reference), using a channel subset of one or

ultiple channels, or re-referencing to a point at infinity using the ref-

rence electrode standardization technique (REST) (for additional in-

ormation on REST, see Yao 2001 ). It is important to carefully consider

hich re-referencing method is best suited for a particular dataset, es-

ecially when using a low-density layout (e.g. Junghofer et al. 1999 ).

sers may re-process data with different re-referencing options

elected to assess the effect of re-reference scheme on their

esults. 

A major concern that stems from low density layouts is inter-

lectrode distance. Given the limited number of channels, there may

e cases where the electrodes used are far apart spatially on the

calp, leading to biases when re-referencing to a channel subset of

ne or multiple channels. If the reference electrode is spatially close

o some electrodes, but far from others, then it will not be represen-

ative of the signal as a whole across the scalp and be disproportion-

tely influenced by the immediately surrounding electrodes ( Lei and

iao, 2017 ). If the user chooses to re-reference to a channel subset, they

ust ensure that the amplitude of that subset is representative of the

roader signal across other electrode sites and that the signal at the

hosen electrode(s) is not correlated with task-induced activity ( Kim,

018 ). 

To avoid biases associated with re-referencing to electrodes on the

calp, average re-referencing is often used, averaging across all scalp

lectrodes. However, this can still be challenging with low density

atasets when the number of electrodes are limited and the distribu-

ion of the electrodes are uneven across the scalp ( Dien, 1998 ). Average

e-referencing is recommended when the EEG layout is dense (some rec-

mmend over 100 channels) and evenly distributed, allowing the overall

ctivity to average to 0 ( Peng and Peng, 2019 ). Users should consider

he distribution of their electrodes before using average re-referencing

n low density data. 

REST, proposed as a neutral reference to a point at infinity

 Yao, 2001 ), is another option for low density data. In a study consid-

ring re-referencing for layouts with 32, 64, and 128 channels, Lei and

iao (2017) found that the relative error was lowest for REST, followed

y average re-reference, and then referencing to a single electrode (FCz,

z), regardless of the number of electrodes and signal-to-noise ratio.

n additional study looking at a graph-based analysis of brain connec-

ivity using a 19-channel layout found that REST can minimize con-

amination and reduce effects of volume conduction ( Olejarczyk and

ernajczyk, 2017 ). With an even broader range of electrodes (21, 34,
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Fig. 8. EEG spectrum before and after complete processing through HAPPILEE with the final optimizations for each step. Two files from the same participant in the 

example dataset are shown from the artifact-laden 30 s segment and clean 30 s segment. The artifact-laden EEG spectrum before processing is shown in the left panel. 

The artifact-laden EEG spectrum after processing is shown in the middle panel. The clean EEG spectrum after processing is shown in the right panel for comparison. 
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4, 128 electrodes), Chella et al. (2016) found that REST reduces bi-

ses associated with referencing to a singular electrode and average re-

eferencing across all electrode density layouts, although REST’s perfor-

ance was further improved with high-density layouts. REST has been

mplemented in HAPPILEE using the open-source MATLAB toolbox for

EST of scalp EEG ( Dong et al., 2017 ). 

Note that for re-referencing to a subset of channels and average re-

eferencing, only channels within the user-specified channel subset se-

ected for HAPPILEE processing can be used for re-referencing. During

e-referencing, if there is a prior reference channel (e.g., an online ref-

rence channel), that channel’s data is recovered and included in the

e-referenced dataset. For example, EGI (Electrical Geodesics, Inc., Eu-

ene, OR) data is typically online-referenced to channel CZ. In this ex-

mple, users could now recover data at channel CZ by re-referencing to

ny other channel or channels (or average rereference) in this step. 

An example file pre- and post-processing with HAPPILEE is shown in

ig. 8 to demonstrate the effectiveness of the pipeline. Clean 30 s seg-

ent of data pre- and post-processing is shown as well as an artifact-

aden 30 s segment of data pre- and post-processing. The clean and

rtifact-laden power spectra are much more similar post-processing

ompared to pre-processing. 

.10. HAPPILEE outputs 

HAPPILEE outputs include the processed EEG and the HAPPILEE pro-

essing reports. These outputs are generated in several folders that are

ocated within the user-specified folder of files for processing. EEG files

re saved out after several intermediate processing steps so that users

an explore in-depth and visualize how those steps affected the EEG sig-

al in their own datasets. The intermediate files are separated into fold-

rs based on the level of processing performed on the data and include:

1) data after filtering to 100 Hz and line-noise reduction, (2) data post-

ad channel rejection (if selected), and (3) post-wavelet-thresholded

ata. If segmenting is enabled, HAPPILEE outputs one to two additional

ntermediate files: (5) post-segmented EEG data (always) and (6) inter-

olated data (if bad data interpolation is enabled). If segment rejection

s selected, HAPPILEE saves the data post-segment rejection as well. 

HAPPILEE outputs fully processed files that are suitable inputs for

urther analyses in one of several formats, selected by the user at the

tart of the HAPPILEE run, to increase compatibility with other software

or data visualizations or statistical analyses. Options include mat, .set,

nd .txt formats. Alongside the fully processed data, HAPPILEE also out-

uts the HAPPE Data Quality Assessment Report and the HAPPE Pipeline

uality Assessment Report, each described in detail below. Finally, if

APPILEE is run in the semi-automated setting, the software generates

n image for each file containing the fully processed data’s power spec-

rum. 
14 
. HAPPILEE data quality assessment report 

HAPPILEE generates a report table of descriptive statistics and data

etrics for each EEG file in the batch in a single spreadsheet to aid

n quickly and effectively evaluating data quality across participants

ithin or across studies. The report table with all these metrics is pro-

ided as a .csv file in the “quality_assessment_outputs ” folder generated

uring HAPPILEE. We describe each of these metrics below to facili-

ate their use to determine and report data quality (for an example data

uality assessment report, see Table 6 ). 

.1. File length in seconds 

HAPPILEE outputs the length, in seconds, of each file prior to pro-

essing. 

.2. Number of user selected channels 

HAPPILEE outputs the number of channels included for each file as

etermined by the user. 

.3. Number of good channels selected and percent of good channels 

elected 

The number of channels contributing data ( “good channels ”) and the

ercentage of channels remaining following rejection of bad channels

re provided. 

.4. Bad channel IDs 

The identity of channels that are marked bad during the bad channel

etection step and subsequently interpolated are provided. Users wish-

ng to limit the amount of interpolated data in further analyses can easily

dentify channels for exclusion using this metric. Users may also reject

les from further analysis on the basis of too high a percentage of bad

hannels. 

.5. Percent variance retained post-wavelet 

The percent change of the variance of the signal following wavelet

hresholding compared to before wavelet thresholding is provided for

he user to evaluate how much data is retained following this step of

rtifact correction. 

.6. Channels interpolated per segment 

Users that choose to perform bad data interpolation within segments

as in FASTER, Nolan et al. 2010 ) will be provided with the list of chan-

els interpolated for each segment. 
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Table 6 

Example HAPPILEE data quality assessment report for the 30 files in the example dataset. 
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.7. Number of segments pre-segment rejection and number of segments 

ost-segment rejection 

HAPPILEE reports the number of segments before segment rejection

nd post segment rejection (using joint probability, amplitude-based re-

ection, or both). If segment rejection is not enabled, these numbers are

dentical. If the user enabled segment rejection in HAPPILEE, they may

valuate the number of data segments remaining post-rejection for each

le to identify any files that cannot contribute enough clean data to be

ncluded in further analyses (user discretion). The user may also easily

abulate the descriptive statistics for remaining segments to report in

heir manuscript’s Methods section (e.g., the mean and standard devia-

ion of the number of usable data segments per file in their study). 

.8. Percent of segments post-segment rejection 

The percentage of segments that remain following segment rejec-

ion (using joint probability, amplitude-based rejection, or both) are

rovided for the user. 

. HAPPILEE pipeline quality assessment report 

For each run, HAPPILEE additionally generates a report table of de-

criptive statistics and data metrics for each EEG file in the batch in a

ingle spreadsheet to aid in quickly and effectively evaluating how well

he pipeline performed across participants within or across studies. Note

hat these metrics may also be reported in manuscript methods sections

s indicators of how data manipulations changed the signal during pre-

rocessing. The report table with all these metrics is provided as a .csv

le in the “quality_assessment_outputs ” folder generated during HAP-

ILEE processing (for an example pipeline quality assessment report,

ee Tables 7 and 8 ). 

.1. r pre/post linenoise processing 

HAPPILEE automatically outputs cross-correlation values at and near

he specified line noise frequency (correlation between data at each fre-

uency before and after line noise processing). These cross-correlation

alues can be used to evaluate the performance of line noise attenu-

tion, as the correlation pre- and post-line noise alogirthm should be

ower at the specified frequency or frequencies, but not at the surround-

ng frequencies beyond 1 to 2 Hz (unless those are also specified by

he user). HAPPILEE will automatically adjust which frequencies are re-

orted depending on the user-identified line noise frequency. This met-

ic can also be used to detect changes in how much line noise is present

uring the recordings (e.g., if generally cross-correlation values are high

hen study protocol is followed, indicating low line-noise removal from

he data, but a staff member forgets and leaves their cell phone on the

mplifier for several testing sessions, the degree of line noise removal

or those files summarized by this metric could be used as a flag to check

n on site compliance with acquisition protocols). 

.2. r pre/post wav-threshold 

HAPPILEE automatically outputs the cross-correlation values before

nd after wavelet thresholding across all frequencies and specifically at

.5, 1, 2, 5, 8, 12, 20, 30, 45, and 70 Hz. These specific frequencies

ere selected to cover all canonical frequency bands across the lifespan

rom delta through high-gamma as well as the low-frequencies retained

n ERP analyses. These cross-correlation values can be used to evaluate

he performance of waveleting on the data for each file. For example, if

ross-correlation values are below 0.2 for all participants in the sample,

he wavelet thresholding step has not progressed as intended (users are

dvised to first check their sampling rate in this case and visualize sev-

ral raw data files). Note that this measure may also be used to exclude

ndividual files from further analysis based on dramatic signal change
16 
uring waveleting (indicating high degree of artifact), for example if

he 8 Hz or all-data cross-correlations are below some threshold set by

he user (e.g., 3 standard deviations from the median or mean, r values

elow 0.2). 

Through these quality assessment reports, HAPPILEE aims to pro-

ide a rich, quantifiable, yet easily accessible way to effectively evalu-

te data quality for even very large datasets in the context of automated

rocessing. Visual examination of each file is not required, although it

s available. We also hope to encourage more rigorous reporting of data

uality metrics in manuscripts by providing these outputs already tab-

lated and easily transformed into descriptive statistics for inclusion in

eports. Users may also wish to include one or several of these metrics as

ontinuous nuisance covariates in statistical analyses to better account

or differences in data quality between files or verify whether there are

tatistically significant differences in data quality post-processing be-

ween study groups of interest. 

Several metrics may also be useful in evaluating study progress re-

otely to efficiently track the integrity of the system and data collec-

ion protocols. For example, the r pre/post linenoise removal metric

ay indicate environmental or protocol deviations that cause signifi-

ant increases in line noise in the data, and the Percent Good Chan-

els Selected and Interpolated Channel ID metrics can be used to track

hether the net/cap is being applied and checked for signal quality prior

o paradigms or whether a channel (or channels) is in need of repair. For

xample, if the T6 electrode starts consistently returning bad data for a

pecific net/cap, it may need to be examined for repair. For further guid-

nce about using the processing report metrics to evaluate data, users

ay consult the User Guide distributed with HAPPILEE software. 

. HAPPILEE compared to other low-density pre-processing 

pproaches 

The HAPPILEE pipeline uses wavelet-thresholding based artifact-

orrection methods to improve pre-processing capabilities for low-

ensity EEG. Below we compare HAPPILEE’s approach to two other

ommon pre-processing methods, independent component analysis

ICA) for artifact correction, and voltage-thresholding segment rejec-

ion for artifact rejection, to justify the choice of wavelet-thresholding

n HAPPILEE’s pre-processing sequence. 

.1. HAPPILEE’s wavelet-thresholding vs. ICA 

Automated artifact correction approaches in high-density EEG

ipelines to date have relied on independent component analysis (ICA)

nd wavelet thresholding methods instead as they can successfully re-

ove artifact while retaining the entire length of the data file. ICA

lusters data across electrodes into independent components that can

egregate artifacts from neural data, while wavelet-thresholding parses

ata within frequency ranges using coefficients that can detect arti-

act fluctuations in either electrode data or independent components.

CA is included as an artifact rejection approach in many pipelines,

ncluding MADE ( Debnath et al., 2020 ) and HAPPE 1.0 ( Gabard-

urnam et al., 2018 ) software. Wavelet thresholding was also im-

lemented in HAPPE 1.0 ( Gabard-Durnam et al., 2018 ) as part of

n initial wavelet-enhanced ICA (W-ICA) artifact rejection step (see

astellanos and Makarov 2006 for details). 

Importantly, prior literature suggests that ICA is not an optimal ar-

ifact rejection tool for low-density EEG configurations, as the number

f channels determines the number of independent components to be

enerated, and many low-density configurations have too few channels

o adequately segregate artifact from neural components sufficiently.

or example, Troller-Renfree and colleagues have indicated through

heir MiniMADE pipeline that ICA performs poorly on their low-density

ata to remove artifacts (the MiniMADE pipeline instead uses threshold-

ased rejection to remove eye blinks) ( Troller-Renfree et al., 2021 ).
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Table 7 

Example HAPPILEE pipeline quality assessment report with line noise removal metrics for the 30 files in the example dataset. 
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Table 8 

Example HAPPILEE pipeline quality assessment report with waveleting metrics for the 30 files in the example dataset. 
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O  
CA has also failed to remove classes of artifact like line noise in low-

ensity data ( Xue et al., 2006 ). In contrast, wavelet-thresholding op-

rates on each EEG channel separately, and thus should have density-

ndependent artifact-correction performance. Indeed, wavelet thresh-

lding has been found to outperform denoising methods that could

pply to low-density data, including Empirical Mode Decomposition,

alman filtering ( Salis et al., 2013 ), and ICA. Specifically, prior stud-

es have found that wavelet thresholding outperforms ICA as an artifact

emoval approach on data with fourteen channels ( Bajaj et al., 2020 ).

rishnaveni and colleagues also found that waveleting performs bet-

er than ICA (using the JADE algorithm) in removing eye blinks in the

ow frequency range while preserving brain signal in high frequencies

 Krishnaveni et al., 2006 ). 

Wavelet thresholding has several additional advantages beyond

hannel-density independent performance when compared to other ar-

ifact correction and rejection approaches. First, wavelet-thresholding

an be applied down to the level of single-channel EEG recordings, as

t has no minimum channel number to run effectively. Additionally,

avelet thresholding corrects artifact without removing discrete time-

oints from the EEG recording, an issue that is inherent to manual arti-

act rejection where whole EEG segments are rejected (and so data from

lean channels during that segment are sacrificed). Relatedly, wavelet

hresholding can detect and remove isolated and non-stereotyped arti-

acts easily without removing neural data from other points in time or

ther channels, whereas ICA must reject an entire timeseries (the com-

onent) to remove the artifact, even if it occurs relatively rarely over

he recording (or ICA must be paired with initial segment rejection,

hich sacrifices good data from other electrodes during those artifact-

ontaminated segments). Wavelet thresholding is also computationally

ore efficient than either ICA or manual inspection (with results that

re perfectly reproducible each time the method is applied to the same

ataset). All of these features make wavelet thresholding appealing as a

trategy for removing artifact from low-density EEG layouts. 
18 
In addition to the prior literature and conceptual reasons provided so

ar in favor of wavelet-thresholding as an artifact-correction strategy for

ow-density recordings, we ran a series of empirical tests to provide ev-

dence for our decision to implement wavelet thresholding, rather than

CA, as our artifact correction method. In order to test ICA’s performance

s a function of channel density, we ran ICA under two conditions: on a

ubset of 5 channels (F3 F4 FZ C3 C4) and on 12 channels downsampled

o the same 5 channels following ICA correction. We predicted that ICA

ould perform differently as a result of varying the number of channels

un on artifact correction for the two datasets. Confirming our predic-

ion, we found that ICA run on five channels rejected all independent

omponents on a total of five files, while ICA run on twelve channels

id so for only two files. That is, processing performance differed as a

unction of channel density during ICA. 

Moreover, downsampling before vs. after artifact correction led to

iffering performances of ICA, as measured by percent variance retained

ollowing ICA (t(8) = 2.61, p = 0.03); see Table 9 below. Further, these

ndings are supported by clear visual differences between the post-

rtifact corrected signal when downsampling occurs before vs. after ICA

 Fig. 9 ). Notably, bad channel detection was not run for this assessment,

ut these findings raise concerns that removing bad channels and thus

hanging the channel density for ICA across files within a dataset would

ary ICA performance within that dataset. Meanwhile, running the same

les under the above conditions through waveleting made no difference

s the artifact correction runs within each channel independently (and

hus is agnostic to channel density differences within or across files).

hat is, wavelet thresholding for artifact correction within a dataset is

ever channel-density dependent, so correction will operate similarly if

 file has many, few, or no bad channels flagged. 

As one additional test of ICA’s performance on low density datasets

nder conditions where bad channels could more commonly alter chan-

el density, we ran ICA on a subset of 8 channels (F3 F4 C3 C4 P3 P4 O1

2) and on 12 channels downsampled to the same 8 channels following
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Table 9 

Percent variance retained following ICA and waveleting for files with 5 channels (F3 F4 FZ C3 

C4) and files with 12 channels downsampled to the same 5 channels. 

Fig. 9. EEG signal before artifact correction (A), after waveleting (B) and after ICA (C) when the file is downsampled to 5 electrodes following artifact correction, 

and after ICA when the file is downsampled to 5 electrodes before artifact correction (D). All scales are in microvolts. 

19 
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Table 10 

Percent variance retained following ICA and waveleting for files with 8 channels (F3 F4 C3 C4 P3 

P4 O1 O2) and files with 12 channels downsampled to the same 8 channels. 
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d  
CA correction (several files in the BEIP dataset had 3–4 bad channels

esulting in ICA on 8–9 good channels instead of the full 12 channels).

nce again, as predicted, we found that downsampling before vs. after

rtifact correction led to differences in the performance of ICA, as ICA

un on 8 channels removed all components on four files, while down-

ampling to 8 channels rejected all components on only two files. For the

ubset of files retained by both processing runs, although there were not

ignificant differences between processing conditions measured by per-

ent variance retained following ICA ( p > 0.05), several individual files

xperienced dramatic changes in variance retained as a function of chan-

el density (e.g., 13 vs 31%, 60 vs 40%); see Table 10 below. Once again,

here are clear visual differences between the post-artifact corrected sig-

al when downsampling occurs before vs. after ICA ( Fig. 10 ; significant

ignal loss in multiple channels observable in the case of downsampling

efore running ICA). 

This pattern may indicate inconsistent ICA results across these chan-

el densities. Again, as expected, the percent variance retained for

aveleting and files rejected were identical for 8 channels compared to

2 channels downsampled to 8 channels. These results together further

olidify our decision to use waveleting instead of ICA to ensure consis-

ent performance across files regardless of differences in bad channel

umber with low density data in HAPPILEE. 

Even with the complete set of channels in a low-density context, ICA

nderperformed in artifact correction relative to wavelet-thresholding

isually ( Fig. 11 ). For example, ICA and wavelet thresholding perform

imilarly on the clean segment where there is very little artifact to cor-

ect, but high amplitude artifact clearly remains in the artifact laden

egment after it is run through ICA ( Fig. 11 ). Meanwhile, wavelet thresh-

lding effectively removes the high amplitude artifact. 

Beyond the inconsistency of ICA’s performance as a function of chan-

el density with low density datasets, ICA is also far less computationally

fficient than waveleting, reflected both mathematically (e.g., complex-

ty of a learning algorithm vs. wavelet function) and in differences in

rocessing time on the same machine. When run on twelve full length
 t  

20 
EIP files averaging roughly three and a half minutes in length and con-

aining 12 channels, ICA was much slower to complete than wavelet-

hresholding. ICA averaged 165 s per file while waveleting averaged

 s per file for artifact correction. Both the prior literature and these

dditional assessments suggest that waveleting-based approaches will

rovide the more efficient and consistent performance relative to ICA

cross the range of low-density layouts considered here. 

We do note that how wavelet-thresholding (spatially-independent

pproach) and spatial filtering approaches (e.g. ICA, PCA) perform rel-

tive to each other in correcting artifacts in EEG may depend on several

ontextual parameters that the field has yet to systematically explore.

or example, the inter-channel distance, total spatial coverage on the

ead across channels, number of channels, and type of artifact signal

ay all affect how ICA performs relative to wavelet-thresholding. Here,

hannels were spatially distributed across the scalp and a variety of ar-

ifact types were included but not compared directly to each other. Fur-

her research is required to systematically quantify how these factors

mpact artifact correction performance across layout configurations and

ge. 

.2. HAPPILEE’s wavelet-thresholding correction vs. segment rejection 

Another option for addressing artifact involves no artifact-correction

teps (e.g., wavelet-thresholding, ICA), instead just artifact rejection

hrough segment/trial rejection. Although no manipulations are per-

ormed on the retained data segments in the “segment rejection only ”

pproach, there is loss of good data from channels without artifact in the

egments that are rejected. Here we examined whether the inclusion of

avelet thresholding reduced the need to reject segments or trials of

ata downstream in the pipeline. To do so, we compared segment rejec-

ion rates in both the simulated and real EEG datasets. 

With respect to the simulated data that had adult eye-blink and other

evelopmental artifacts added, an automated amplitude-based voltage

hreshold ( − 100 to 100 𝜇V threshold) was used for segment rejection
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Fig. 10. EEG signal before artifact correction (A), after waveleting (B) and after ICA (C) when the file is downsampled to 8 electrodes following artifact correction, 

and after ICA when the file is downsampled to 8 electrodes before artifact correction (D). All scales are in microvolts. 

Fig. 11. EEG signal before artifact correction, after ICA, and after wavelet thresholding. Two files from the same participant in the example dataset are shown with 

10 s of data extracted from the clean 30 s segment (A) and artifact-laden 30 s segment (B). The EEG signal before artifact correction is shown in the left panel. The 

EEG signal after ICA is shown in the middle panel. The EEG signal after wavelet thresholding is shown in the right panel. All scales are in microvolts. 
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Table 11 

Performance of two pre-processing sequences on simulated EEG data and real EEG data. 
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omparisons. Only the wavelet thresholding approach retained all trials

f simulated signal ( Table 11 ) and appeared (based on visual inspection)

o have removed all blinks and most of the other artifacts. In contrast,

hen using artifact rejection only, epochs exceeding the voltage thresh-

ld were removed, including some epochs with blinks, but not all. A total

f 116 epochs were contaminated with blink artifact, but only 17 epochs

ere removed with voltage threshold artifact rejection when additional

rtifact was included in the simulated data (in a separate test, not re-

orted in detail here, we ran the data with just blink artifact included

nd 107/116 epochs with blinks were removed with voltage threshold

rtifact rejection). Visual inspection of the data suggested that some

f the blinks in noisier epochs were retained when subjected to only

rtifact-rejection thresholding because the noise stemming from mus-

le activity included negative deflections that lowered the amplitude of

he blinks, which caused the blink artifacts to fall within our acceptable

oltage threshold range. Of note, some muscle activity still remained

n the simulated data in all pre-processing conditions in this test. These

imulated data results strongly support the use of HAPPILEE’s wavelet-

hresholding as an artifact-correction approach prior to segment rejec-

ion to improve both artifact removal and segment retention. 

To further evaluate the performance of segment retention only com-

ared to wavelet-thresholding, the real EEG data in the BEIP study was

everaged with manual segment rejection. Manual segment rejection

ere addressed the effect observed above in the simulated data where

ome artifacts in the segment rejection only approach passed through

utomated voltage thresholds when combined with other artifacts (as

ften occurs in real EEG data). Specifically, manual segment rejection

ates were compared in 14 files of the BEIP dataset that were processed

wice, once with and once without wavelet-thresholding on the data

mean number of segments before rejection = 105.6). The mean num-

er of clean segments retained after manual rejection on post-waveleted

ata (85.7 segments) was significantly higher than the mean number of

lean segments retained without wavelet thresholding (62.6 segments;

(18) = − 9.07, p = 0.00000004, Table 11 ). That is, artifact-correction

ia wavelet-thresholding improved segment retention by 37% relative

o no artifact-correction before segment rejection in real EEG data. This

attern of results across comparisons with ICA and artifact rejection via

oltage-thresholding provides consistent evidence in support of using

avelet-thresholding for artifact-correction in pre-processing EEG data

n low-density contexts. 

. Conclusion 

The field of cognitive neuroscience has been rapidly moving toward

he use of automated EEG pre-processing pipelines that make use of

ontemporary artifact correction and rejection approaches like wavelet-

hresholding and ICA as effective, efficient, standardized alternatives to

ubjective and labor-intensive manual pre-processing. Here we provide a

olution suitable for lower-density layouts from approximately 32 chan-
22 
els down to single channel EEG with the current automated pipeline,

APPILEE. HAPPILEE supports processing resting-state and task-related

EG, as well as ERP data (see Monachino et al. 2021 for details on op-

imization for ERP analyses). HAPPILEE is suitable for configurations

ith any number of channels, though it may perform best on data with

 to around 32 channels (those with higher-density configurations may

onsider pipelines optimized for high-density data, including the com-

anion HAPINNES or HAPPE + ER ( Monachino et al., 2021 ) pipelines

ithin HAPPE 2.0 software. 

There are several limitations to HAPPLIEE that should also be consid-

red. First, HAPPILEE was optimized and validated using developmental

EG and simulated signals, so it remains to be validated in adult EEG

ata or other populations. Though the authors do not anticipate specific

easons HAPPILEE would not perform well in other populations, and

ave run HAPPILEE in adult EEG data themselves, researchers with EEG

ata from populations not validated in this manuscript are encouraged

o carefully verify performance themselves before using HAPPILEE. Sec-

nd, bad channel detection was tested on a dataset with twelve chan-

els. As a result, those working with layouts with substantially fewer

lectrodes may consider verifying for themselves that the default set-

ings work sufficiently well for their datasets. Alternatively, the bad

hannel detection step is optional, so if it is unsuitable or is not de-

ired for a dataset, the user may opt-out of this step of the pipeline.

urthermore, the appropriate amplitude threshold for performing seg-

ent rejection by amplitude will vary across datasets collected on dif-

erent ages or systems and should be verified through visual inspection

f several files (via running HAPPILEE in the semi-automated setting

ith visualizations). Lastly, HAPPILEE was optimized using a single,

el-based (low-impedance) system (James Long) given the data avail-

ble to the researchers, but others should independently verify perfor-

ance on the other systems and recording contexts to confirm com-

atibility with HAPPILEE. Although the authors do not currently fore-

ee any difference in performance between datasets collected in labora-

ory environments (i.e., the current optimization dataset) and datasets

ollected in the home or clinics, further testing will be necessary in

rder to fully verify its efficacy on data collected in non-laboratory

ettings. 

The HAPPILEE pipeline is freely available as part of the HAPPE soft-

are (first released with HAPPE version 2.0), covered under the terms

f the GNU General Public License (version 3) (Free Software Foun-

ation, 2007). HAPPILEE’s sequence of processing steps are automat-

cally triggered within HAPPE 2.0 + software when the user indicates

hey have data with fewer than 32 channels. HAPPILEE may be ac-

essed at: https://github.com/PINE-Lab/HAPPE . The HAPPE 2.0 + soft-

are download includes a user guide to aid in the set-up and implemen-

ation of the pipeline. The subset of BEIP EEG data used to optimize the

APPILEE pipeline, including the files used in the clean vs. artifact and

rtifact addition approaches and simulated signals are publicly available

t: https://zenodo.org/record/5088346 ( Lopez et al., 2021 ). 

https://github.com/PINE-Lab/HAPPE
https://zenodo.org/record/5088346
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