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The developing amygdala: a stu
dent of the world
and a teacher of the cortex
Nim Tottenham1 and Laurel J Gabard-Durnam2
Amygdala and prefrontal cortex (PFC) function subserving

emotional behavior has largely been examined from the

perspective of their adult roles, with a tremendous focus on the

regulatory influence of the PFC over amygdala activity. Here we

consider the circuit’s function in its developmental context,

when maximal learning about emotion and incentives from the

environment is necessary. We argue that during development

the amygdala exhibits an overwhelming influence over the

developmental destiny of circuitry function, and the amygdala’s

learning and experiential history are conveyed to the cortex to

modulate subsequent PFC development. We present recent

findings on the different developmental trajectories of the

amygdala and PFC, their functional connectivity, and the timing

of environmental influences as evidence supporting our

position.
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Introduction
Approximate 200 years ago, William Wordsworth noted

that the ‘child is the father of the man.’ In neuroscience,

this quote reminds us that the temporal history of devel-

opmental events is utterly informative when interrogating

the functioning of the mature brain. Knowledge of which

regions exhibited behaviorally-relevant function earlier

versus later and how their communication evolved over

ontogenetic time provides a basis for understanding the

construction of the mature circuit [1�� [1_TD$DIFF]]. Emotional beha-

viors in adulthood, including arousal, regulation, and

decision making, rely heavily on the bidirectional con-

nections between the amygdala and the prefrontal cortex

(PFC) [2,3]. The empirical research of this relationship

has overwhelmingly focused on the PFC regulation or
www.sciencedirect.com
‘control’ over the amygdala. While this top-down rela-

tionship is clearly critical for understanding modulation of

amygdala function [4–7], it is a perspective that depends

on the adult vantage point of mature cortex. Moreover,

this unilateral focus does not provide a complete account

of amygdala–PFC connectivity since the ‘bottom-up’

amygdala to PFC structural connections are quite robust

in adulthood, even compared with top-down connections

[8]. However, when the amygdala–PFC circuit is consid-

ered in its developmental context, it is clear that amyg-

dala function is very much ‘in control’ of the circuit’s

functioning (Figure 1) and may serve as a biological ‘tutor’

to the later developing cortex. In this paper, we argue that

the amygdala’s early development, together with its high

sensitivity to environmental exposures, and its massive

interconnectivity with the whole cortex [9] position it for

learning about the emotional world and conveying that

information along with ontogenetic influences to the later

developing prefrontal cortex.

The amygdala’s function across the lifespan is to iden-

tify and affectively learn about important events in the

environment [10] that are emotionally important or

motivationally relevant [11]. Both affective learning

and associated amygdala activity increase under condi-

tions of ambiguity or uncertainty [12–14]. This uncer-

tainty is elicited, for example, by presentations of

fearful [15] or surprised faces [16], which contain more

ambiguous information than angry faces [17]. The

amygdala is also a central mediator of threat condition-

ing paradigms [18–21]. Importantly, the amygdala is

most reactive during the uncertain phases of affective

learning, including the conditioning paradigm phases of

initial acquisition or extinction [22,23]. As predicted by

traditional models of learning (e.g., Resorla-Wagner

[24]), high uncertainty and arousal facilitates the learn-

ing rate. Given the importance of uncertainty in amyg-

dala-based learning even in maturity, we can imagine

the affective learning context of the young child. Never

is the world as uncertain and never is there more to

learn than in early life, when we are new to this planet.

Compared to adulthood, childhood may be likened to

the early trials of a lifelong learning paradigm —

emotional stimuli should be more salient, novel, and

surprising, and learning should occur at a very high rate

for children, who do indeed exhibit very rapid learning,

including aversive conditioning, under novel conditions

[25��,26]. Here, we consider the developmental trajec-

tories of the amygdala–PFC circuitry to illustrate how

this early learning manifests in the brain. In this
Current Opinion in Psychology 2017, 17:55–60
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Figure 1

The relationship between amygdala and prefrontal cortex from different developmental vantage points.
opinions paper, we focus on affective learning, given its

significant associations with functioning of amygdala–
PFC circuitry.

Amygdala shows early functionality
Structurally, the amygdala develops rapidly during post-

natal life [27,28], providing a plausible neurobiological

mechanism to support this massive learning early in life.

Functional magnetic resonance imaging has also

revealed that the amygdala exhibits early functionality.

Specifically, studies have revealed a robust functional

responsiveness to emotional stimuli by early childhood,

which is larger in magnitude than the responses of older

individuals [29–33]. Consistent with these findings, a rich

animal and human literature examining the effect of both

lesions and stress on the amygdala across the lifespan

suggest that this region’s role in shaping emotion and

social behavior is especially important during early post-

natal development, with consequences for affective be-

havior lasting throughout life [34–38]. These findings

suggest a sensitive period for human amygdala develop-

ment in the late infancy to childhood period (see

Figure 2, top and middle) when the amygdala is particu-

larly receptive to environmental stimulation.

The amygdala as a student
Taken together, the developmental literature has been

pointing to late infancy and childhood as sensitive period

when amygdala circuitry function can be phasically

modulated by stimuli to elicit childhood-specific con-

nectivity phenotypes [39–41]. So what are these impor-

tant experiences that guide amygdala (and downstream

cortical) development? In the case of altricial species

(i.e., animals born in an underdeveloped state that

require parental care for survival), such as the human,

there is likely no other stimulus as powerful as the

parent. The parent is the conduit of emotional learning

during the sensitive period in amygdala development

[42], and is itself a powerful motivating reinforcer [43].

The parent can both attenuate (e.g., parental buffering
Current Opinion in Psychology 2017, 17:55–60
[44�]) and amplify [45�] affective behavior as well as

amygdala engagement by the environment. Prior work

has shown that during childhood, parental presence

increases children’s likelihood of entering a novel [46]

or threatening situation (e.g., new school), and decreases

nighttime fears [47].

Findings from the rodent literature show that the pres-

ence/absence of the parent (always the mother for rats)

has dramatic effects on the resting activity of the pup’s

amygdala [48] and stimulus-elicited function. When a rat

pup without its mother is presented with an odor + shock

pairing, it will quickly learn an aversion to the odor.

However, in the physical presence of the mother, aver-

sive learning is effectively blocked [49], and the rat pup

even shows a paradoxical preference for the odor. This

point is important because it shows that the mother

actively guides aversive learning, not merely distracting

the pup. Blocking of aversive learning by the regulated

parent (in this case, the parent is anesthetized) occurs

because the parent is a powerful stimulus that prevents

activation of threat-related catecholaminergic systems

and the hypothalamic pituitary adrenal axis, thereby

preventing amygdala engagement during learning

[49]. This buffering is important because it protects

the infant from potentially deleterious amygdala over-

excitation during its sensitive period and from ensuing

affective deregulation. On the other hand, a dysregu-

lated parent (exhibiting fear) is highly effective in in-

creasing amygdala engagement and aversive learning

about environmental stimuli [45�,50]. Evidence from

humans is strikingly consistent with the rodent work.

As in the developing rodent, it has been shown that

parental presence buffers against children’s elevations in

stress hormones [51], parental stimuli attenuate amyg-

dala activity in children [52�], and fear expressed by the

parent directly translates into fear related behaviors in

the child [50]. Thus the parent is a highly effective

regulator during development, with the ability to poten-

tiate or attenuate amygdala function.
www.sciencedirect.com



Amygdala development Tottenham and Gabard-Durnam 57

Figure 2

(Top) Posited sensitive periods for development, with amygdala. (Middle) Hierarchical organization of amygdala and amygdala–PFC development,

with an influence (arrow) of amygdala development on the nature of PFC-amygdala development. (Bottom) Model for the nature of amygdala–PFC

connectivity across development.
PFC shows relatively late functionality
This strong amygdala response in childhood occurs prior

to the development of regulatory connections with the

prefrontal cortex (PFC) [29]. In adulthood, the medial

PFC sends projections to inhibitory cells within the

amygdala that reduce amygdala reactivity and are thus

fundamental to mature affect regulation [53,54]. Unlike

in the adult, these regulatory influences from the medial

PFC are not available to the young child. Several studies

have now shown that functional connections between the

amygdala and the medial PFC are immature in childhood

[30,32,55] and switch to the adult-like state in adoles-

cence (Figure 2, bottom) [29,56–59]. That is, during

childhood the amygdala is less likely to be regulated

by the mPFC than after childhood. Instead, during in-

fancy and childhood, external agents (e.g., caregivers) can

serve as social regulators of affect and amygdala activity

during this time.

The amygdala as a teacher
Given the hierarchical nature of amygdala–PFC circuitry

development and the amygdala’s learning function, we
www.sciencedirect.com
posit that affective development is highly dependent on a

cascade of events that includes the early environment

influencing amygdala development, and the amygdala

subsequently influencing the development of the cortex

[60]. This position is supported by anatomical tracings in

rodent studies, which have shown that amygdala projec-

tions to the PFC emerge earlier than the reciprocal PFC

projections to amygdala [61,62]. Moreover, novel, in vivo
observation of neuroplasticity in the rodent has shown

surging levels of malleable connectivity between the

mPFC and amygdala during the late juvenile period,

consistent with a juvenile sensitive period for the func-

tional circuitry [63�,64�]. Developmental lesion studies in

primates also support this position. For example, amyg-

dala lesions during the neonatal period in rhesus monkeys

produce aberrant neural development in the PFC in adult

monkeys, whereas analogous amygdala lesions in adult-

hood did not produce these same PFC alterations [65]. In

humans, childhood-timed amygdala lesions resulting

from the congenital disease Urbach–Wiethe are associat-

ed with impairments in explicit facial affect processing,

while lesions incurred in adulthood do not result in these
Current Opinion in Psychology 2017, 17:55–60
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same impairments [66]. Similarly, childhood-timed

lesions leave intact PFC-dependent somatic responses

for memories of events prior to amygdala damage, but not

for events that occurred later [67], consistent with the idea

that the amygdala’s information transfers to the cortex

across development.

While this hypothesis requires significant continued test-

ing, patterns of amygdala-cortical development observed

with functional neuroimaging suggest that early amygdala

function might predict later patterns of PFC connections.

First, the temporal patterning in typical development is

suggestive of the amygdala’s cascading influence on later

cortical development. During the transition between

childhood and adolescence, adult-like connections be-

tween the PFC and amygdala begin to emerge. However,

this transition is preceded developmentally by a very

large amygdala response to environmental stimuli during

childhood, which attenuates thereafter. This pattern

could reflect the amygdala’s influence on PFC connec-

tivity development, but it could also reflect PFC connec-

tions developing independently of amygdala input.

However, work with samples of children who exhibit

altered timing of amygdala development suggest the

former. Under conditions of atypically high amygdala

reactivity, for example following exposures to early life

stress [56,68–71], adult-like connections between the

PFC and amygdala seem to appear at a developmentally

earlier point [56,72]. This pattern of accelerated PFC-

amygdala connectivity following heightened amygdala

reactivity is consistent with the hypothesis that amygdala

function has hierarchical influences on the development

of connections with the PFC.

Recently, it has been demonstrated through sequential,

longitudinal tracking across a 2-year period that the

functional architecture of resting-state PFC-amygdala

connectivity is prospectively predicted by the nature of

initial stimulus-elicited PFC-amygdala connectivity, par-

ticularly during childhood [73��]. This finding suggests

that the nature of resting-state functional architecture

arises from phasic patterns of functional connectivity

elicited by environmental stimuli over the course of

development on the order of years. Taken together,

the human and the animal developmental literatures

provide increasing support for the hypothesis that initial

amygdala functioning ‘instructs’ the course of PFC de-

velopment.

Feldman Barrett and colleagues [74��] have proposed an

Embodied Predictive Interoception Coding theory,

which posits that in adulthood, limbic signals make pre-

dictions regarding the external world based on experien-

tial histories, rather than simply reacting to environmental

stimuli, and these predictions or ‘anticipations’ are then

transmitted to high-level cortical regions. The framework

of this theory can be very helpful when considering the
Current Opinion in Psychology 2017, 17:55–60
developmental model presented in this current opinions

article. During development, the amygdala may be par-

ticularly active in learning about one’s unique environ-

ment. The structural and functional consequences of

these early experiences on the amygdala endure and

may serve as a foundation for the nature of affective

predictions that transmit to cortical regions throughout

maturity. That is, the early experiences can inform the

development of the brain’s internal model of the world

and of the internal milieu [75] that guides future beha-

viors in maturity. These predictions can surely be

updated by subsequently occurring experiences later in

life, but the impact of the early environment on subse-

quent amygdala development is massive.

Concluding remarks
We have previously provided arguments for the impor-

tance of early experiences on amygdala development

[41,76] and suggested late infancy and childhood may

comprise sensitive periods for development. The evi-

dence is clear that the amygdala develops earlier than

the PFC, which places it in a powerful position for

helping to entrain the PFC and its connections with

the amygdala (either directly through bottom-up connec-

tions or indirectly by modulating attentional mecha-

nisms). Studies need to be performed that identify the

mechanisms of this influence in humans. Here, we extend

these ideas by considering the amygdala–PFC circuit and

suggesting that early experiences are important not only

for amygdala development, but also for their amygdala-

mediated downstream effects on subsequent PFC devel-

opment.
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